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STABILITY AND CONTROLLABILITY IN PROPORTIONAL NAVIGATION* 

V.L. KAN and A.S. KEL'ZON 

A discussion is presented of the possibility of applying the methods 
developed in /I, 21 to the case of arbitrary values of the navigation 
constant, thus permitting, in particular, treatment of the case in which 
this constant is less than unity (weak regulation), as well as cases in 
which the value of the constant lies between 1 and 2. It is shown that 
by considering the motion on a Riemann surface one can avoid the 
complications due to the fact that the right-hand sides of the 
differential equations are multivalued functions. Partition of the 
parameter plane, as developed previously in /If, is extended to the 
general case, thus making it possible in principle to carry out a 
qualitative investigation of the nature of the motion (including 
stability and controllability), without actually solving the equations. 
An example is presented. 

Previous investigations of stability and controllability in proportional navigation have 
frequently been based on the linearized theory (see, e.g., /2/j. However, whereas this ap- 
proach can be justified in the context of manoeuvrability, since the regulators keep the 
appropriate angles sufficiently small, linearization of the fundamental equations is unjusti- 
fiable. During the motion the angle may vary by tens and hundreds of degrees (in some cases 
the moving point describes even more than one revolution about the origin), and linearization 
may lead to quite incorrect conclusions. 

It will be shown below that stability and controllability can be investigated for arbi- 
trary values of the navigation constant, using the exact equations of motion of the centre of 
mass, with linearization applied only for rotation about the centre of mass. 

1. RmdamsntaZ equations. If the pursued point is moving in a straight line at constant 
velocity, the equations of relative motion of the centre of mass of the pursuing body have 
the form /l/ 

Here a is the relative distance, n the angle of inclination of the slighting line, 9 the 
angle of inclination of the absolute velocity, y the lead angle, v the velocity of the 
centre of mass of the pursuing body, us the velocity of the pursued point, and b the navi- 
gation constant (Fig.1). 

If b=#=i (the case b = 1 corresponds to classical pursuit or pursuit with anti- 
cipation and will not be considered here) Eqs.ll.1) can be reduced to the form /l/ 

a’ = vl Ieos q - p cos (b - 1) (q -. eo)l = u,F (q) 

q' = vl Isin q +- p sin (b - 1) (q - tQl = -u, f(q) 
{1.2) 

vo b 
%=10+ *__* =6-_1%--~ 

where e0* P are new parameters, with E,, depending on the initial conditions. 
The quantities a and n in Egs.tl.2) may be treated as polar coordinates of a point B in 

relative motion relative to a point A, 
in the opposite direction to the vector 

the pole being placed at A and the polar axis pointing 
v, (if it pointed in the same direction as us, the 

polar coordinates would be (a,% +q)). Eliminating t from Eqs.(l.2), we obtain the equation 
of the relative trajectory: 

1 da --=- cos q - p cm (b - f)(q - so) F hf 
@ drl sin q + p sin (6 - t)(_tl - eO) 

= - - 
f @l) 

(1.3) 
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When one passes from the system of Eqs.(l.l) to Eq.(1.3), the initial data are partially 
incorporated in the differential equation itself as parameters (through eO). Here and below, 
therefore, the full notation for the right-hand sides, auxiliary functions and solutions 
should be F (Q, eo), L (n, eO), a (11, sO, a,, to) and so on. 

After finding the equation of the trajectory, one determines the time of the motion from 
the second equation of (1.2) ; 

(1.4) 

Eqs.(1.2)-(1.41 enable one to carry out a qualitative analysis of the trajectory and the 
motion. When this is done it is more convenient to write Eq.(1.3) as tg v = -f (11)/F (11)s 
where Y is the angle between the relative trajectory and the radius-vector (the positive 
direction of the trajectory is assumed to be the direction of increasing n; see Fig.2). Hence 

dv 

dt) = G'(q) ’ 
LB!.. . L(q) = _!!zp G2 01) + + (P” - I), G* (11) = f2 (t,) +. p (,,j 

Eqs.(1.2) and (1.5) also yield the curvature of the relative trajectory: 

K = I I bd I Q (rl) !’ (a@ (rl)) 
51 h) = L (rl) + 6’ h) = pb {P - ~0s lbq - (b - 1) (q - Eo)]) 

(1.6) 

The sign of the curvature (which is the same as the sign of 61(n)) is defined here rela- 
tive to the pole, i.e., K>O or K<O according as the trajectory is concave toward 
the pole (lies nearer the latter than the tangent) or convex toward the pole. 

Fig.1 Fig.2 

The shape of the trajectories and the nature of the motion. 
(1.2)'that the functions f(q) 

It is obvious from Eqs. 
and F(q) uniquely define the form of the trajectory and the 

nature of the motion (the factor v, affects the scale only). However, a qualitative in- 
vestigation of the motion for fractional values of the navigation constant (unlike the case 
of integral b considered in /l/J encounters difficulties, due to the fact that f(q) and F (rl) 
are not always single-valued functions of the position of the point. Indeed, as the point 
moves the angle r) may leave the interval [O, Znl, and if b is a fraction the values of f (II) 
and F(q) at n and n + 2s need not coincide. Thus, to compute the right-hand sides of 
Eqs.tl.2) (or of the auxiliary functions) at any point, one must survey the "prehistory" of 
the motion. 

To explain the method proposed here, an example of a trajectory will be considered in 
Sect.6. 

Another approach is to assume that with each passage through the ray n = O(Zn) the 
polar angle changed in a jumpwise fashion by 2n; but this would introduce discontinuities 
which are quite unjustified by physical reality. For fractional values of b, therefore, it 
is more convenient to replace the real plane of the motion by a Riemann surface and to con- 
sider the motion on the surface. The first sheet of the surface will necessarily be the plane 



311 

of the real motion; the rays n = 0, 2n, 4n, . . . are cuts along which one can pass from one 

sheet to the next. The number of sheets will be equal to 4 if b = l/q is rational (and the 

ray n = 2nq will then coincide with the ray 9 =O), infinite if b is irrational. Of 

course, the true trajectory is obtained by projecting the Riemann surface onto its first sheet. 
Fig.3 illustrates the Riemann surface and the correspondence between the edges of the 

cuts for g= 4 showing all four sheets; the asterisks indicate coinciding edges of the dif- 

ferent sheets. 
This approach is also extremely convenient in considerations of the differential Eq.(1.3) 

of the trajectory. Indeed, it may turn out, for example, that some specific n makes the 
denominator of the right-hand side of the equation vanish, whereas n f2~d does not. When 
considering the motion in the real plane it would be inconvenient to have to distinguish dif- 
ferent cases, according as the equation has or does not have a singular point. Changing to a 
Riemann surface eliminates this problem - the singular point lies on one sheet of the surface. 

By introducing Riemann surfaces /3/, one can extend all the properties of the motion, as 
studied in /l, 4/, to the general case of arbitrary b. 

1. Throughout the motion the angle n varies monotonically (and may leave the interval 

10, 2x1. 
2. If the initial value of 1) is a root of the function f(q), it will maintain its 

value throughout the notion (both the relative motion and the absolute motion will be recti- 
linear) - this is the case of parallel convergence (the term is unfortunate, since the motion 
may also involve divergence). 

3. If at the initial time n +nl, where 

f (rli) = 0 (2.1) 

then the whole motion takes place in the sector between two roots of f(q) (i.e., the relative 
trajectory cannot cross any of the rays n = Q). 

4. At the end of the motion always n+qi, and if at the same time a-0, then the 
motion will terminate in a finite time (barring the exceptional case in which p = 1 and the 
initial data are chosen in a very special way); but if a increases without limit or tends to 
a finite limit (the latter is possible only when p = I), the motion will continue indefinitely. 

5. Near a ray rl=ni th e trajectory may have one of 
the 20 shapes shown in Fig.4. The shape of a trajectory is 
determined by the signs of the functions L(qi) and Q (Iii) 

or of their derivatives, if the functions themselves vanish. 
(Note that some of the trajectories shown in Fig.4, such as 
Nos.1, 8, and 16 or Nos.2, 9, and 17, differ from each other 
only in the order of contact with the straight line ?I = ?i 

or the rate of variation of the curvature near n = ni.) 

Fig.4 

6. A qualitative picture of the shape of the trajectory 
in the sectors between the roots can be obtained by deter- 
mining the roots of E'(1)) and 52 (n) from the equations 

F (nip) = 0, Q (nit) E 0 (2.2) 

constructing the rays rt = qiF and 1) = nio (over the 
entire Riemann surface, or on that portion of the surface 
which is accessible from the first sheet if it is assumed 
that the initial data always correspond to the first sheet), 
with due allowance for the sign of the curvature (i.e., 

Q(n)), and the increase and decrease of the distance (i.e., 
the sign of P(n)) in the appropriate sectors (for examples 
of such constructions for b = 3i4 , see /5/l. 

Of course, one can always assume that the initial data 
lie in the range (0,2n), but then the parameter e, may 
lie outside (0, 2n). If one starts instead with a prescribed 
value of eO, the values of %*Ilo must be chosen so that 
8% takes this value. One can thus limit the range of a,. 

7. Once the trajectories have been constructed the nature of the motion can be determined 
at once, if one takes into account that n varies monotonically and sgnn' = -sgn f(q). 

3. stabizity of motion. Analysis of the stability of the motion in the classical sense 
requires a consideration of perturbations and the properties of the regulators, This was done 
for the linearized theory in /5/. It turns out that in the exact theory considered here this 
is less important, since the properties of the motion as determined are such that in most 
cases a comparatively slight action on the part of the regulators cannot exert a significant 
effect on them (of course, this does not eliminate the problems involved in allowing for lags 
and transients in the regulators, the effect on mismatch when the target is being approached, 
etc., all of which must be studied in addition). 

We will therefore consider three aspects of stability. 
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~t~~~~t~ Of the roots. Depending on whether n-+-+-E at the end of the motion, the 
roots of f(q) may be classified as stable or unstable. Stable roots are those to which 
the angle q converges during the motion; unstable roots are those from which q diverges. 
There may also be semistable roots, which are limits of n from one side only. A classifi- 
cation of the roots according to the signs of the derivative I’ (11~) (or of higher derivatives 
if f' (qi) = 0) is given in Table 1. The table also classifies the roots as convergent or 
divergent, according to the sense in which the distance changes as the point naves along the 
ray q = qi: if p = i there may also be neutral roots, at which the system is in a state of 
relative equilibrium (which may be either stable or unstable). 

Table 1 

StubiZity of the traJectories. A trajectory is said to be stable if a small variation 
of the initial data produces a nearby trajectory. In this context there may be different 
definitions of "nearness". If "nearness" is measured in terms of angles, then since 11 -+ n'li 
all trajectories will be stable at the end of the motion, with the exception of rectilinear 
trajectories corresponding to unstable roots (for these trajectories a small perturbation 
will induce a finite change in the angle). If one considers instead the shortest distance 
between trajectories, then all trajectories for which the distance a tends to zero or to a 
finite limit are stable, As to trajectories for which lz-+'x?, these will be stable in this 
sense only if the distance from the &right line %l =: nr tends to zero or to a finite limit 
(i.e., except for cases 2, 9, 17 and one of the sides in cases 6 and 7 in Fig.4), and only 
for perturbations not affecting the parameter F,. For perturbations that affect eg ~(i.e., 
the roots Si). trajectories going off to infinity are always unstable in this sense, since 
a small change in the roots when a-+ CO will cause the change in distance to increase with- 
out limit. However, the most important stability concept in escape problems (in which one is 
interested primarily in increasing a) is obviously stability with respect to the angle (bear- 
ing), i.e., stability in the first sense. 

StabiZity of convergence 5~ divergence. By stability of convergence or divergence we 
mean that small variations in the initial data exert no influence on the final result of the 
motion. 
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Types of roots 

iiconvergent 
2)divergent 
3) neutral 

stable 

4) convergent 
qdlvergent 
6) neutral 

unstable 

7) convergent \ 
8) divergent 
9, neutral I 

semi-stable 

This kind of stability is always present, unless the initial data pertain to a position 
at an unstable or semistable root. In the latter case a small perturbation (for a semi- 

stable root - a small perturbation displacing the point toward the unstable side) will cause 
a sudden change in the nature of the motion; the final result of the motion will be reversed: 
if the original root has a convergent one the point will move off; if it was divergent, the 
point will converge. These are the only cases in which a regulator exerting a small additional 
action (not comparable in magnitude with the force driving the basic motion,(l.l)l may alter 
the end result of the motion. Such perturbations are obviously small variations of p or 

rotation of the polar axis through a small angle (i.e., manoeuvring of the point A), provided 
that the parameter values are not near the boundaries of the regions corresponding to each 
type of motion (see below). 

4. Dependence of the motion on the pcmmeters. As indicated in Sects.2 and 3, the nature 
of the motion is determined first and foremost by the values and types of the roots of the 
function f(q), then by the roots of the functions F(q) and Q(n), and also by the relative 
positions of all these roots on the Riemann surface. 

If one is not interested in the precise shape of the trajectories, it is sufficient to 
study the real roots of f(q) and F(q) and their relative positions. It follows from Eqs.(2.1) 
and (2.21 that the roots are functions of the parameters b, p, so, and for fixed b they are 
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functions of p and so. Of fundamental importance in this connection is the curve in the 

P, 80 plane along which the equations have multiple roots, since it divides the plane into 

regions in which the function has the same number of roots, and each of these regions is only 

weakly dependent on the parameters. This curve is known as the separatrix (in the parameter 
plane) or discriminant curve. Both terms are also used in a somewhat different sense. 

The parametric equations of the separatrix are 

f (q) = sin n + p sin (A - 1) (n - so) = 0 
f’ (9) = cos Tl + p (b - 1) cos (b - 1) (rl - %) = 0 

(4.1) 

Here n is a parameter (in fact - the value of a double root of Eq.(2.1)). The curve 
defined by Eq.(4.1)has two periods with respect to I): 

T (4.2) 

is the period of a separate branch (and at the same time the period of each of the single- 
valued branches of the function ni (so) defined for given p by Eq.(2.1)), and T,=2n/jb- 
1 ( is the period of the separatrix as a whole (corresponding to permutation of the roots of 
Eq.(2.1) 1. 

If b is rational T, and T, are commensurable and the separatrix consists of a finite 
number of branches (this was proved for an integer in /l/j. If b is irrational the separatrix 
will have an infinitesimal period, i.e., its periods form a module of the second kind (in the 

terminology of /6/). Similarly, one considers the separatrices of F (9). 
As we have stated, an important factor in determining the nature of the motion is the 

relative position of the roots of f(q) and F(q); hence it is also important to determine the 
mutual separatrix of the two functions, i.e., the curve in the parameter plane at whose points 
the functions have common roots. It follows from (2.1) and (2.2) that this is the straight 
line p = I. 

The separatrices of f(q) and F(q) lie entirely in the strip between the straight 

lines p = 1 and p = lb-1 1-l (this was established in /l/ for integral b>3). It follows 
that motions in the parameter regions above and below this strip have similar properties. 
Within the strip, study of the motion requires construction of the separatrices of f h) 
and F(q), which divide the strip into certain subregions; one then determines which of 
these subregions contains the prescribed values of p and 8,. 

The above regions come together (i.e., the strip reduces to the straight line P ; 1) 
only in case b = 2 (the case investigated in /7/). This once again emphasizes the excep- 
tional nature of that case, implying that conclusions drawn for b = 2 cannot be carried over 
to the general case, as is still sometimes done erroneously. 

General conclusions as to the nature of the motion are presented in Table 2 for the case 
b < 1, b = 1 - q-‘. The number of extrema on the trajectories is identical with the number of 
sectors of possible motion. Similar tables can be drawn up for rational b. The general con- 
clusions drawn in these tables (except for the number of sheets of the Riemann surface) hold 
for any values of b in the appropriate intervals (b < 1, 1 < b < 2, b = 2, b > 2). A slightly 
more accurate description of the shapes of the trajectories is achieved by considering the 
possibility that roots of f(q) and Q(n) might coincide. The corresponding curve in the 
parameter plane has the equation 

Q h*) = 0 (4.3) 
where ni are the roots of Eq.(2.1). This curve lies entirely in the region where P < 1, 
since it is obvious that if p>l the function D(q) has no roots. Eliminating ni from 
(4.3) and (2.1), we obtain 

p = cos I&,, + 'i, (2m + 1) nb (b - 1)-l] (4.4) 

As is evident from Table 2, the nature of the motion for the strip between 
p = 1 b - 1 I-’ (this strip lies above the straight line p = 1 if b< 2 belot:t! ifand 

. . 
, 

b> 2) may be different. 
To ascertain the nature of the motion it is in fact necessary to construct the separa- 

trices of f(n) and F (rl). To this end, in view of the periodicity of these functions, we need 
only construct one arc of the separatrix (the fundamental arc), with the parameter q varying 
from 0 to n. This arc is then repeated periodically, producing one branch of the separatrix, 
and the curve is then translated by multiplies of TI. If b is rational this procedure yields 
only a fine number of branches, since then the periods T, and Tp have some rational re- 
lation to one another, and a finite number of translations bring the branch back to its 
original position. If b is irrational, the curve will fill out the strip densely; but any 
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investigation of the dependence of the solution on the 
parameters must take into account only branches relating 
to the roots 'I lying on the appropriate sheets of the 

I 

Riemann surface. 

M Fig.5 illustrates the partition of the parameter 
plane by the separatrices of f h) and F(q) for 1, 7 ::z 
The solid curve represents the separatrix of / (11). and 
the dashed curve that of F(n). The figures in circles are 
the numbers of real roots of f(ai (lying on two sheets 
of the Riemann surface, since this values of b has a 
denominator g= 2), those in squares are the numbers of 
roots of F (7)). For each of the subregions into which the 

i separatrices divide the strip, the shape of the trajec- 

Kzj 
tories and thegeneral nature of the motion are the same. 

I Other examples may be found in /l/ (for b- 3,4 and 5) 
Ll and /6/ b =%j, where the reader will also find more 

e//0 Jr/s 60 detailed constructions of the trajectories for these cases. 
Note that the trajectories for b = ‘I, are intermediate 

Fig.5 
between those for b=3 and 4, considered in /I/, and 
it can indeed be shown that the types of motion in this 

case are intermediate between those exhibited in /i/. 

5. The controtZabitity of motion. In proportional navigation, motion is actually 
possible only if the normal accelerations created are not too large. The normal acceleration 
of a point is associated with the curvature of the absolute trajectory (briefly - the absolute 
curvature); in fact, as the magnitude of the velocity is constant, the acceleration can vary 
only due to a change in absolute curvature. An examination of Fig.1 will convince the reader 
that UJ~& = K,va = Q-v. where w, is the normal acceleration, K, the absolute curvature, and +' 
the angular velocity of the velocity vector of the absolute motion. Hence K, = +‘/v. Using 
Eqs.(l.Q), and (1.61, we obtain 

K, = -bf h) : ipa) (5.1) 

This equation enables one to treat the variation of the curvature along the trajectory 
as a function of the relative polar coordinate 7. Differentiating 15.1) and using Eqs.(1.5) 
and (1.6), we obtain 

@ (q) = f' (n) + F (11) = 2~0s ($ + p (b - 2)cos (b - 1) (q - EJ 

It is obvious that an extremum of the absolute curvature (hence, of the normal acceler- 
ation) may occur only at roots of Q(q). If m(q) h as no roots in the sector under consider- 
ation (i.e., in the sector between the initial value rln and the nearest stable root), or if 
the root corresponds to a minimum of/K, I,then the maximum value of the curvature must occur 
at an endpoint of the interval. In that case one must consider limK, as 11-11iq which 
can be done using the linarized theory, since the motion is taking place near a root. 

In the linearized theory we have, near a simple root (see /I/), 
a ZZ cI 111 - Vi Ia7 cL = --F (ri) i f’ tri) 

and SO, for the absolute CUrVatUre near a root, 

I Km I = Cl lrl -q, triv rl = 1 + F (rl2M’ bli) = @ (rlz)lf’ At) (5.3) 
Obviously, the behaviour of the curvature near a root is determined by the sign of ri. 

and since in the case of a stable root (the only case of interest1 f’(qi)> 0, the sign of r, 
is identical with that of @ hi). Thus, the same function @((11) determines the variation of 
the curvature far from a root and the behaviour of the curvature near the root /a/. 

If a stable root appears in a sector of the Riemann surface where rf, (II) > 07 the curva- 
ture will tend to zero as that root is approached (Eq.tS.2) implies only that the curvature 
decreases in that sector). Consequently, by the terminology introduced in /l/, it is well 
controllable. Conversely, if Q (rl)<D in a certain sector, then the curvature increases 
(by (5.2)) and tends to infinity (by (5.3)). It might appear that all this applies only in 
the case when the angle q increases. However, we are in fact interested not in K, but in 

/ K,, I; now, it follows from (5.1) and (5.2) that 
spn (d / K, I / dq) 5 SW f (Tl) vn @ (11) (5.4) 

and since it follows from (1.6) that sgn 11' : --s!zn / ($7 we see that if 'I increases with time 
we have the case already considered, whereas if q decreases ,with time the signs of d 1 K,, ) /dq 
and (D(n) are the same. 



Thus, once the rays q = q3z1 corresgonding to the roots of the eqttation @ Ows = 0, 
have been constructed, one can determine how the absolute curvature (i.e., normal acceleration) 
varies along a trajectory, and also determine its behaviour as a contact point is approached 
[if a contact poiIVz eXistsI, i.e., as a stable ctinvergent root is approached. 

Having constructed the mutual separatrix of f(q) and @ (q), i.e., the cwve defined par- 
ametrically 'by the equations 

one can divide the parameter plane into regionsT in each of which the roots are of the same 
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type- the controllability of the roots may vary only on passing from one sector between roots 
of Q(T)) to another, i.e., when the functions a('~() and f(q), have a common root; this 
principle, therefore, governs the dependence of the controllability on the parameters. 

6. ElXlmple. Let us consider the case b = Vs, _D = 2, co==0 - these data will provide an 
adequate demonstration of the dependence of the stability and controllability on the parameter 

P* We have 

f (n) = sin q - p sin Ii, Q, F(q) = cos r) - p cosl/,q 
f' (11) = cos T) - IlaP cos '/,T), a,' (9) .-= 2 co9 n - a/# cos '/,n 

One of the roots of f(n) is ?I=(). 
We have f'(Q = 1 -lisp. Thus, Q is a stable root if P > 3. 
Since F (%) = 1 - P t q1 is a convergent root if P > i. However. the fact that it is both 

stable and convergent for l<P<3, does not imply that convergence from the region near this 
root actually occurs for all these values of p. Indeed, we have cr,(ql) :-= 2- a/g. Consequently, 
a root is well controllable only if l<p<V, and poorly controllable if 3!a<p<3. Hence it 
follows that at, say, p = 2, the motion cannot actually occur, * since the normal acceleration 
in a motion approaching a contact point increases without limit. On the other hand, it is 
interesting that when I < P < % the normal acceleration on approaching a xoot tends to zero, 
I.e., contact is possible, despite the fact that the control is "weak" (b - 1). 

Note that the shape of the relative trajectory is not a clear indication of the control- 
lability of roots. In the present example one can use a substitution generalizing that used 
in /2/ for integers b, to obtain the equation of the trajectory in a finite form. 

If Z = t&?/s% then g(q) = (1 f Z~)*'B ] Za- 1/3 I-3 ) 2 13 gives the equation of the trajectory, apart 
from a costant factor. 

The graph of the trajectory for h = 2/3, p = 2, 8, = 0 (on an arbitrary scale) is shown in 
Fig.6. Since the relative distance II varies very strongly, one cannot illustrate the whole 
trajectory on the same scale. The figure therefore consists of five sections. Two of them 
(a and d) are drawn to a small scale, showing the general shape of the trajectory for certain 
sectors; the other three, drawn to a large scale, depict separate parts of the trajectory near 
the origin. These graphs illustrate the aforementioned phenomenon. 

a b C 

Fig.6 

Indeed, when the point approaches, say, the ray 
different from its trajectory when approaching the ray 
point of the plane is, geometrically speaking, exactly ~. 

l)=2n, it describes a trajectory quite 
corresponding to q= kc, though the 
the same. The reasan is the difference 

in conditions. Here the difference is automatically represented by the value of the angle q. 
Convergence to the root 91 is seen on the first and third sheets of the Riemann surface. 

In actual fact, however, as we have already shown, this convergence cannot actually occur. 
It should be noted that the above example illustrates the influence of the parameter p. 

Since the initial data are partly incorporated in the parameter Ed, while in other respects 
one is considering the entire trajectory, our example does not illustrate the effect of the 
initial data. 

1. 
2. 

3. 
4. 

5. 
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process in cases when 
the observer parameters depend on the trajectory of the controlled 
dynamic system is considered. Such a dependence arises, for instance, 
when the measuring device is installed on a controlled moving platform 
(an aircraft) or if its parameters are affected by the dynamically 
varying characteristics of the environment (temperature). It is 
interesting to examine the selection of the trajectory of a dynamic 
system that minimizes the maximum possible estimation error (the size of 
the information set) /l, 2/. In formal terms, this question can be 
reduced to an optimal control problem with a non-smooth functional of a 
special form. Necessary conditions of optimality are given and some 
optimal observation processes are constructed. 

Although the problem considered in this paper may be regarded as an 
infinite-dimensional generalization of some regression experiment design 
problem /3/, the results appear to be new and in a certain sense 
unexpected. Control of the size of the information set was previously 
considered in /4-6/. 

1. Statement 5f the pobtem. The observed signal is given by 

y (t) = a* (t) 8 + E (t), t E [to, Tl (1.1) 

where 0~ R” is an unknown parameter vector, and a (t) E R" is a known vector function 
whose components a" (.) are assumed to be linearly independent and continuous on [to, Tj; the 
unknown scalar disturbances g(t) are bounded, 

Here and henceforth, the asterisk denotes the transpose and i=l, 2, . . . . n. 
For a fixed y(v) the set of vectors 8 that satisfy (l.l), (1.2) is called an 

mation set compatible with the realized signal /2/. In our case, the information set 
ellipsoid 

E (8, P) = {8 E R" : (0 - W)* P (0 - 0’) < 1 - h2} 

6” = P-U, P = P (a (-)) = (aa*> 

(a = <a#>, hz = <ya> - d*P-'d 

(1.2) 

infor- 
is an 

(1.3) 
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